
MAPO: Mining and Recommending
API Usage Patterns

Authors: Hao Zhong, Tao Xie, Lu Zhang, Jian Pei and Hong Mei
Presented by: Wentao Fan

Introduction

● Most API libraries are difficult to use

● Programmers struggle with choosing and organizing proper API methods

● Programmers may need to browse a large number of code snippets(to locate snippets

with relevant usage) with given API methods(e.g. Google, Strathcona).

Problem Statement

● Existing API methods are often complex and not well documented

● Returned code snippets are often large in number, and make it hard for programmers to

locate useful ones.

Proposed Tool

● MAPO (Mining API usage Pattern from Open source repositories) has been developed
for mining API usage patterns automatically.

● Pattern mining: to cluster code snippets exhibiting different usages into different
clusters

● Pattern recommendations: uses mined patterns as an index for their associated code
snippets

Example
● Find one method appendToGroup
● Use “appendToGroup lang:java” to query

Google code search and it returns 151
code snippets

● Both snippets are put near the bottom of
the returned list

● the first snippet is put as the 84th of the
snippet list, and the second one is put as
the 104th of the snippet list

Example

● MAPO adopts a frequent subsequence
miner to mine usage patterns from the
code snippets in the cluster

● From each of the two clusters, MAPO
acquires one usage pattern

● Mined patterns are usually much fewer
than code snippets, so that locating can
be more effective

● MAPO associates “Pattern1” in Figure 3
to the code snippets in Figure 1

Related Works

● Recommending code snippets. Evaluation (Section Experimental Study) shows that the
mined patterns help programmers locate useful code snippets more effectively than
approaches that recommend raw code snippets

● Mining API properties.
○ Category 1: mine association rules among software artifacts
○ Category 2: mine frequent call sequences from API client code or traces
○ Category 3: mine automata from API client code or traces

Approach

Approach: Source Code Analyzer

● Collecting third-party API method calls
○ the corresponding call sequence of statement

getGraphicalViewer().setRootEditPart(new ScalableRootEditPart()) is as follows:
@new org.eclipse.gef.editparts.ScalableRootEditPart
@org.eclipse.gef.ui.parts.GraphicalEditor#getGraphicalViewer
@org.eclipse.gef.EditPartViewer#setRootEditPart

Approach: Source Code Analyzer

● Dealing with conditional statements
○ 6 possible API method call sequences: {i1, i2, i5}, {i1, i2, i6}, {i1, i2, i3, i5}, {i1, i2,

i3, i6}, {i1, i2, i4, i6}, and {i1, i2, i4, i5}.

Approach: Source Code Analyzer

● Selecting a subset of sequences
○ Method overweight: Different methods may contain different numbers of conditional

statements.
○ Common-path overweight: common path objects may be called repeatedly.

● Inlining non-third-party methods
○ Issue: A single method may not contain all the involved third-party API methods of an API

usage scenario
○ When constructing the API method call sequences of m, inline the API method call

sequences of each non-third-party method m’ called by m.
○ When m and m’ are in the same class, MAPO traverses the parser tree of the class for m’s

API method call sequences
○ When not in the same class, MAPO resolves the declaring class of m and then finds the

declaring class’s source file for m ’s method body
○ Iteration

Approach: API Usage Miner

● Clustering API method call sequences
○ In both code snippets in Figure 1,

appendToGroup is used with
findMenuUsingPath and add, and the API
method call order is
findMenuUsingPath→ add→
appendToGroup.

○ Observation: Among snippets, similar
method/class names tend to exhibit the
same usage

○ When calculating the similarity between
names, split them into words

Approach: API Usage Miner

● Called API methods
○ Definition of the similarities between API method call sequences
○ I1 and I2 are the corresponding sets of API methods appearing in the two

sequences.
○ Numerator：The number of calls appearing in both sets
○ Denominator：The number of calls appearing in either sets

Approach: API Usage Miner

● Mining API patterns
○ Minimum user-defined support: the number of API method call sequences that

contain the patterns
○ In each cluster (C), the support of an API method call sequence (s) is defined as

follow:

Approach: API Usage Recommender

● Can use the mined patterns as an index
to locate snippets.

● The rank of a pattern is the average
similarity of the supporting snippets to
the current programming task.

● Use the method names and the class
names to calculate the similarity

● Use the returned patterns as an index to
locate snippets

Evaluation: Experimental Study

● Setup
○ Apply 20 open source projects which use

GEF(Graphical Editing Framework) to
develop graphical editors as a code
repository.

○ MAPO extracted API method call
sequences and built clusters of these
sequences using the technique
presented in API usage miner.

○ Strathcona is able to locate a set of
relevant code snippets from a code
repository.

○ Restrict Google search scope to the
same projects as MAPO.

Evaluation: Experimental Study

● Quantitative Comparison
○ Prepared 13 programming tasks. In

each task, use the first API method
call and the programming context in
the example to query the three tools

○ Column “Total num. of items” lists
the returned items from each query

○ Sub-columns “Strat.” and “Google” list
the number of snippets returned by
Strathcona and Google code search
respectively

Evaluation: Experimental Study

● Quantitative Comparison(1st
matched)
○ Strathcona always returns 10

snippets
○ Google code search returns much

fewer snippets than expected
■ Restrict search scope for fair
■ Can filter out snippets that

match given keywords
○ MAPO relies on mined patterns to

achieve a similar goal

Evaluation: Experimental Study

● Quantitative Comparison(1st
matched)
○ MAPO often requires programmers

to check fewer snippets for the first
match than Strathcona

○ MAPO requires programmers to
check fewer snippets for the first
match than Google code search

○ MAPO uses patterns as an index for
snippets, and it requires less effort to
locate the 1st match than the other
two tools

Evaluation: Experimental Study

● Quantitative Comparison(2nd
matched)
○ In 8 examples Strathcona fails to find

the 2nd match
○ 3 examples MAPO fails to find the

2nd match
○ MAPO requires to check fewer or the

same number of snippets for the 2nd
match than Strathcona.

○ In summary, MAPO requires less
effort to search for rematched
snippets than the other tools

Evaluation: Experimental Study

● Impacts of MAPO’s Design
Decisions
○ Turn off MAPO’s individual internal

techniques
○ Selection: helps MAPO mine frequent

API method call sequences
○ Inlining: helps MAPO mine API method

calls from different methods of client
code

○ Clustering: helps MAPO alleviate the
interlacement among different usages
that are sensitive to programming
tasks.

Evaluation: Experimental Study

● Impacts of MAPO’s Design Decisions
○ Clustering: If |N| is small, s1’s support

value does not decrease much, and can
still be a frequent sequence: 1, 2, 9, 10,
and 12

○ If |N| is large, s1’s support value may
decrease too much to be mined as a
frequent sequence: 5, 7, and 11

○ N is the set of sequences that also call
API methods in s1 from other clusters

○ “# of API method call sequences with ss”
○ “# of API method call sequences in

cluster C1”.

->

ON OFF

Evaluation: Experimental Study

● Threats to Validity
○ Only one set of APIs is used, and the recommendations are all on the use of GEF

○ Code snippets are limited in number

○ Code snippets from books may omit rare usages

○ Some other code search engines or tools may perform better than these two tools

Evaluation: Empirical Study

● Aims to investigate whether MAPO
can assist programmers to
complete programming tasks

● 6 programming tasks
● 6 graduate students (subjects)

majoring in computer science from
Peking University to complete the 6
tasks

Evaluation: Empirical Study

● 2 stages
● In each stage, the 2 groups

exchange their roles as the MAPO
group and the control group

● 1st stage, completing task 1-3,
Group 1 using Google code search
and Strathcona, Group 2 using
MAPO

● 2nd stage, completing task 4-6,
Group 1 using MAPO

Evaluation: Empirical Study

● In Tasks 1 and 2, there is a little
difference between the MAPO group
and the control group.

● In Task 3, there is also a little difference
between the MAPO group and the
control group.

● In Tasks 4, 5, and 6, there is a
significant difference in performance
between the MAPO group and the
control group.

● In the task 4-6, as API usages are
relatively complicated, MAPO
successfully helps programmers
produce code with fewer bugs than the
other two tools

Evaluation: Empirical Study

● Threats to validity
○ Shares the threats with the study in Experimental Study as well
○ Involves human subjects
○ The results observed in the empirical study may not be applicable to programming

tasks which are not in the study
○ Control group can use both Google code search and Strathcona, which may have

negative impacts on the two tools
○ The learning curve of the these subjects may affect the results

Conclusion

● MAPO: Help understand API usages and write API client code more effectively.
● MAPO implements a mechanism that combines frequent subsequence mining

with clustering to mine API usage patterns from code snippets.
● MAPO provides a recommender that integrates with the existing Eclipse IDE.

Through MAPO’s recommender, a programmer can retrieve patterns to help
navigate their associated snippets to find the code snippet of interest effectively.

● The study results show that MAPO helps a programmer to locate useful code
snippets more effectively than existing tools Strathcona and Google code search

Discussion

● Pros and cons on evaluation process

● Possible improvements on MAPO?

● Which tool/tools you will prefer to use?(MAPO, Google Code Search & Strathcona)

References

[1] M. Acharya, T. Xie, J. Pei, and J. Xu. Mining API patterns as partial orders from source code: From usage scenarios to
specifications. In Proc. 7th ESEC/FSE, pages 25–34, 2007.

[2] M. Aeschlimann, D. Baumer, and J. Lanneluc. Java tool smithing extending the Eclipse Java Development Tools. In Proc. 2nd
EclipseCon, 2005.

[3] R. Agrawal and R. Srikant. Mining sequential patterns. In Proc. 7th ICDE, pages 3–14, 1995.

[4] R. Alur, P. Cern` ˇ y, P. Madhusudan, and W. Nam. Synthesis of interface specifications for Java classes. In Proc. 32nd POPL,
pages 98–109, 2005.

[5] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In Proc. 29th POPL, pages 4–16, 2002.

[6] D. Angluin. Learning regular sets from queries and counterexamples. Information and Computation, 75(2):87–106, 1987.

[7] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap representation. In Proc. 8th KDD, pages
429–435, 2002.

[8] M. Bruch, T. Sch¨afer, and M. Mezini. FrUiT: IDE support for framework understanding. In Proc. 4th ETX, pages 55–59, 2006.

References

[9] R. Chang, A. Podgurski, and J. Yang. Finding what’s not there: a new approach to revealing neglected conditions in software. In Proc. ISSTA, pages
163–173, 2007.

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf. Bugs as deviant behavior: a general approach to inferring errors in systems code. In Proc.
8th SOSP, pages 57–72, 2001.

[11] M. Gabel and Z. Su. Javert: fully automatic mining of general temporal properties from dynamic traces. In Proc. 16th FSE, pages 339–349, 2008.

[12] Google Code Search Engine, 2008. http://www.google.com/codesearch.

[13] J. Han and M. Kamber. Data mining: concepts and techniques. Morgan Kaufmann Publishers Inc., 2000.

[14] T. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In Proc. 5th ESEC/FSE, pages 31–40, 2005.

[15] R. Holmes and G. C. Murphy. Using structural context to recommend source code examples. In Proc. 27th ICSE, pages 117–125, 2005.

[16] R. Holmes, R. J. Walker, and G. C. Murphy. Approximate structural context matching: An approach to recommend relevant examples. IEEE
Transactions on Software Engineering, 32(12):952–970, 2006.

References

[17] R. Hudson and P. Shah. GEF in depth. In Proc. 2nd EclipseCon, 2005.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys, 31(3):264–323, 1999.

[19] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit programming rules and detecting violations in large software code. In Proc. 5th
ESEC/FSE, pages 306–315, 2005.

[20] V. B. Livshits and T. Zimmermann. Dynamine: Finding common error patterns by mining software revision histories. In Proc. 5th ESEC/FSE,
pages 296–305, 2005.

[21] D. Lo and S. Khoo. SMArTIC: towards building an accurate, robust and scalable specification miner. In Proc. 6th ESEC/FSE, pages 265–275,
2006.

[22] D. Mandelin, L. Xu, R. Bodik, and D. Kimelman. Jungloid mining: helping to navigate the API jungle. In Proc. PLDI, pages 48–61, 2005.

[23] S. N. Matthew Scarpino, Stephen Holder and L. Mihalkovic. SWT/JFace in Action. Manning, 2005.

[24] F. McCarey, M. O. Cinn´ ´ eide, and N. Kushmerick. Recommending library methods: An evaluation of the vector space model (VSM) and latent
semantic indexing (LSI). In Proc. 9th ICSR, pages 217–230, 2006.

References

[25] A. Michail. Data mining library reuse patterns using generalized association rules. In Proc. 22nd ICSE, pages 167–176, 2000.

[26] T. Ng, S. Cheung, W. Chan, and Y. Yu. Work experience versus refactoring to design patterns: a controlled experiment. In Proc.
6th ESEC/FSE, pages 12–22, 2006.

[27] M. K. Ramanathan, A. Grama, and S. Jagannathan. Path-sensitive inference of function precedence protocols. In Proc. 29th
ICSE, pages 240–250, 2007.

[28] S. Reiss and M. Renieris. Encoding Program Executions. In Proc. 23rd ICSE, pages 221– 230, 2001.

[29] Z. M. Saul, V. Filkov, P. Devanbu, and C. Bird. Recommending random walks. In Proc. 7th ESEC/FSE, pages 15–24, 2007.

[30] C. Scaffidi. Why are APIs difficult to learn and use? Crossroads, 12(4):4–4, 2005.

[31] S. Shoham, E. Yahav, S. Fink, and M. Pistoia. Static specification mining using automatabased abstractions. In Proc. ISSTA,
pages 174–184, 2007.

[32] N. Tansalarak and K. T. Claypool. XSnippet: Mining for sample code. In Proc. 21st OOPSLA, pages 413–430, 2006.

References

[33] S. Thummalapenta and T. Xie. PARSEWeb: A programmer assistant for reusing open source code on the web. In Proc. 22nd
ASE, pages 204–213, 2007.

[34] A. Wasylkowski, A. Zeller, and C. Lindig. Detecting object usage anomalies. In Proc. 7th ESEC/FSE, pages 35–44, 2007.

[35] W. Weimer and G. Necula. Mining temporal specifications for error detection. In Proc. 11th TACAS, pages 461–476, 2005.

[36] J. Whaley, M. Martin, and M. Lam. Automatic extraction of object-oriented component interfaces. In Proc. ISSTA, pages
218–228, 2002.

[37] C. C. Williams and J. K. Hollingsworth. Recovering system specific rules from software repositories. In Proc. 2nd MSR, pages
1–5, 2005.

[38] T. Xie and J. Pei. MAPO: Mining API usages from open source repositories. In Proc. 3rd MSR, pages 54–57, 2006.

[39] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Perracotta: mining temporal API rules from imperfect traces. In Proc. 28th
ICSE, pages 282–291, 2006.

Thank You!!

