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Introduction

● Most API libraries are difficult to use

● Programmers struggle with choosing and organizing proper API methods

● Programmers may need to browse a large number of code snippets(to locate snippets 

with relevant usage) with given API methods(e.g. Google, Strathcona). 



Problem Statement

● Existing API methods are often complex and not well documented

● Returned code snippets are often large in number, and make it hard for programmers to 

locate useful ones.



Proposed Tool

● MAPO (Mining API usage Pattern from Open source repositories) has been developed 
for mining API usage patterns automatically. 

● Pattern mining: to cluster code snippets exhibiting different usages into different 
clusters

● Pattern recommendations: uses mined patterns as an index for their associated code 
snippets



Example
● Find one method appendToGroup
● Use “appendToGroup lang:java” to query 

Google code search and it returns 151 
code snippets

● Both snippets are put near the bottom of 
the returned list

● the first snippet is put as the 84th of the 
snippet list, and the second one is put as 
the 104th of the snippet list



Example

● MAPO adopts a frequent subsequence 
miner to mine usage patterns from the 
code snippets in the cluster

● From each of the two clusters, MAPO 
acquires one usage pattern 

● Mined patterns are usually much fewer 
than code snippets, so that locating can 
be more effective

● MAPO associates “Pattern1” in Figure 3 
to the code snippets in Figure 1



Related Works

● Recommending code snippets. Evaluation (Section Experimental Study) shows that the 
mined patterns help programmers locate useful code snippets more effectively than 
approaches that recommend raw code snippets

● Mining API properties.
○ Category 1: mine association rules among software artifacts
○ Category 2: mine frequent call sequences from API client code or traces
○ Category 3:  mine automata from API client code or traces



Approach



Approach: Source Code Analyzer

● Collecting third-party API method calls
○ the corresponding call sequence of statement 

getGraphicalViewer().setRootEditPart( new ScalableRootEditPart()) is as follows: 
@new org.eclipse.gef.editparts.ScalableRootEditPart 
@org.eclipse.gef.ui.parts.GraphicalEditor#getGraphicalViewer 
@org.eclipse.gef.EditPartViewer#setRootEditPart



Approach: Source Code Analyzer

● Dealing with conditional statements
○ 6 possible API method call sequences: {i1, i2, i5}, {i1, i2, i6}, {i1, i2, i3, i5}, {i1, i2, 

i3, i6}, {i1, i2, i4, i6}, and {i1, i2, i4, i5}.



Approach: Source Code Analyzer

● Selecting a subset of sequences
○ Method overweight: Different methods may contain different numbers of conditional 

statements. 
○ Common-path overweight: common path objects may be called repeatedly. 

● Inlining non-third-party methods
○ Issue: A single method may not contain all the involved third-party API methods of an API 

usage scenario
○ When constructing the API method call sequences of m, inline the API method call 

sequences of each non-third-party method m’ called by m.
○ When m and m’ are in the same class, MAPO traverses the parser tree of the class for m’s 

API method call sequences
○ When not in the same class, MAPO resolves the declaring class of m and then finds the 

declaring class’s source file for m ’s method body
○ Iteration



Approach: API Usage Miner 

● Clustering API method call sequences
○ In both code snippets in Figure 1, 

appendToGroup is used with 
findMenuUsingPath and add, and the API 
method call order is 
findMenuUsingPath→ add→ 
appendToGroup. 

○ Observation: Among snippets, similar 
method/class names tend to exhibit the 
same usage

○ When calculating the similarity between 
names, split them into words 



Approach: API Usage Miner 

● Called API methods
○ Definition of the similarities between API method call sequences
○ I1 and I2 are the corresponding sets of API methods appearing in the two 

sequences.
○ Numerator：The number of calls appearing in both sets
○ Denominator：The number of calls appearing in either sets



Approach: API Usage Miner 

● Mining API patterns
○ Minimum user-defined support: the number of API method call sequences that 

contain the patterns
○ In each cluster (C), the support of an API method call sequence (s) is defined as 

follow: 



Approach: API Usage Recommender

● Can use the mined patterns as an index 
to locate snippets. 

● The rank of a pattern is the average 
similarity of the supporting snippets to 
the current programming task. 

● Use the method names and the class 
names to calculate the similarity

● Use the returned patterns as an index to 
locate snippets



Evaluation: Experimental Study

● Setup
○ Apply 20 open source projects which use 

GEF(Graphical Editing Framework) to 
develop graphical editors as a code 
repository. 

○ MAPO extracted API method call 
sequences and built clusters of these 
sequences using the technique 
presented in API usage miner. 

○ Strathcona is able to locate a set of 
relevant code snippets from a code 
repository. 

○ Restrict Google search scope to the 
same projects as MAPO. 



Evaluation: Experimental Study

● Quantitative Comparison
○ Prepared 13 programming tasks. In 

each task, use the first API method 
call and the programming context in 
the example to query the three tools

○ Column “Total num. of items” lists 
the returned items from each query

○ Sub-columns “Strat.” and “Google” list 
the number of snippets returned by 
Strathcona and Google code search 
respectively



Evaluation: Experimental Study

● Quantitative Comparison(1st 
matched)
○ Strathcona always returns 10 

snippets
○ Google code search returns much 

fewer snippets than expected 
■ Restrict search scope for fair
■ Can filter out snippets that 

match given keywords
○ MAPO relies on mined patterns to 

achieve a similar goal



Evaluation: Experimental Study

● Quantitative Comparison(1st 
matched)
○ MAPO often requires programmers 

to check fewer snippets for the first 
match than Strathcona

○ MAPO requires programmers to 
check fewer snippets for the first 
match than Google code search

○ MAPO uses patterns as an index for 
snippets, and it requires less effort to 
locate the 1st match than the other 
two tools



Evaluation: Experimental Study

● Quantitative Comparison(2nd 
matched)
○ In 8 examples Strathcona fails to find 

the 2nd match
○ 3 examples MAPO fails to find the 

2nd match
○ MAPO requires to check fewer or the 

same number of snippets for the 2nd 
match than Strathcona.

○ In summary, MAPO requires less 
effort to search for rematched 
snippets than the other tools



Evaluation: Experimental Study

● Impacts of MAPO’s Design 
Decisions
○ Turn off MAPO’s individual internal 

techniques
○ Selection: helps MAPO mine frequent 

API method call sequences 
○ Inlining: helps MAPO mine API method 

calls from different methods of client 
code

○ Clustering: helps MAPO alleviate the 
interlacement among different usages 
that are sensitive to programming 
tasks.



Evaluation: Experimental Study

● Impacts of MAPO’s Design Decisions
○ Clustering: If |N| is small, s1’s support 

value does not decrease much, and can 
still be a frequent sequence: 1, 2, 9, 10, 
and 12

○ If |N| is large, s1’s support value may 
decrease too much to be mined as a 
frequent sequence: 5, 7, and 11

○ N is the set of sequences that also call 
API methods in s1 from other clusters

○ “# of API method call sequences with ss”
○ “# of API method call sequences in 

cluster C1”.

->

ON OFF



Evaluation: Experimental Study

● Threats to Validity
○ Only one set of APIs is used, and the recommendations are all on the use of GEF

○ Code snippets are limited in number

○ Code snippets from books may omit rare usages

○ Some other code search engines or tools may perform better than these two tools



Evaluation: Empirical Study

● Aims to investigate whether MAPO 
can assist programmers to 
complete programming tasks

● 6 programming tasks 
● 6 graduate students (subjects) 

majoring in computer science from 
Peking University to complete the 6 
tasks



Evaluation: Empirical Study

● 2 stages
● In each stage, the 2 groups 

exchange their roles as the MAPO 
group and the control group

● 1st stage, completing task 1-3, 
Group 1 using Google code search 
and Strathcona, Group 2 using 
MAPO

● 2nd stage, completing task 4-6, 
Group 1 using MAPO



Evaluation: Empirical Study

● In Tasks 1 and 2, there is a little 
difference between the MAPO group 
and the control group.

● In Task 3, there is also a little difference 
between the MAPO group and the 
control group.

● In Tasks 4, 5, and 6, there is a 
significant difference in performance 
between the MAPO group and the 
control group.

● In the task 4-6, as API usages are 
relatively complicated, MAPO 
successfully helps programmers 
produce code with fewer bugs than the 
other two tools



Evaluation: Empirical Study

● Threats to validity
○ Shares the threats with the study in Experimental Study as well
○ Involves human subjects
○ The results observed in the empirical study may not be applicable to programming 

tasks which are not in the study
○ Control group can use both Google code search and Strathcona, which may have 

negative impacts on the two tools
○ The learning curve of the these subjects may affect the results



Conclusion

● MAPO:  Help understand API usages and write API client code more effectively. 
● MAPO implements a mechanism that combines frequent subsequence mining 

with clustering to mine API usage patterns from code snippets.
● MAPO provides a recommender that integrates with the existing Eclipse IDE. 

Through MAPO’s recommender, a programmer can retrieve patterns to help 
navigate their associated snippets to find the code snippet of interest effectively. 

● The study results show that MAPO helps a programmer to locate useful code 
snippets more effectively than existing tools Strathcona and Google code search



Discussion

● Pros and cons on evaluation process

● Possible improvements on MAPO?

● Which tool/tools you will prefer to use?(MAPO, Google Code Search & Strathcona)
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