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Introduction

e Most APl libraries are difficult to use
e Programmers struggle with choosing and organizing proper APl methods

e Programmers may need to browse a large number of code snippets(to locate snippets

with relevant usage) with given API methods(e.g. Google, Strathcona).




Problem Statement

e Existing APl methods are often complex and not well documented

e Returned code snippets are often large in number, and make it hard for programmers to

locate useful ones.




Proposed Tool

e MAPO (Mining API usage Pattern from Open source repositories) has been developed
for mining APl usage patterns automatically.
e Pattern mining: to cluster code snippets exhibiting different usages into different

clusters
e Pattern recommendations: uses mined patterns as an index for their associated code

shippets




Example

e Find one method appendToGroup

e Use “appendToGroup lang:java” to query
Google code search and it returns 151
code snippets

e Both snippets are put near the bottom of
the returned list

e the first snippet is put as the 84th of the
snippet list, and the second one is put as
the 104th of the snippet list

public class DEditorActionContributor ... {
public void contributeToMenu(IMenuManager menu) {
super.contributeToMenu(menu);
IMenuManager editMenu = menu.findMenuUsingPath(IWorkbenchActionConstants.M_EDIT);
if(editMenu != null
editMenu.add(new Separator());
editMenu.appendToGroup(“additions”, fToggleInsertModeAction);
}
}

y

public class RubyEditorActionContributor ... {
public void contributeToMenu(IMenuManager menuManager) {

IMenuManager gotoMenu = menu.findMenuUsingPath(“navigate/goTo");
if(gotoMenu != null ){
gotoMenu.add(new Separator(“additions2”));
gotoMenu.appendToGroup(“additions2”, fGotoMatchingBracket);

Fig. 1. Code snippets of “appendToGroup” returned by Google code search




Example

e MAPO adopts a frequent subsequence @ patterns 7 i i So¥=0
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to the code snippets in Figure 1




Related Works

e Recommending code snippets. Evaluation (Section Experimental Study) shows that the
mined patterns help programmers locate useful code snippets more effectively than
approaches that recommend raw code snippets

e Mining API properties.

o  Category 1: mine association rules among software artifacts

o  Category 2: mine frequent call sequences from API client code or traces
o  Category 3: mine automata from API client code or traces
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Approach: Source Code Analyzer

e Collecting third-party APl method calls
o the corresponding call sequence of statement
getGraphicalViewer().setRootEditPart( new ScalableRootEditPart()) is as follows:
@new org.eclipse.gef.editparts.ScalableRootEditPart
@org.eclipse.gef.ui.parts.GraphicalEditor#getGraphicalViewer
@org.eclipse.gef.EditPartViewer#setRootEditPart




Approach: Source Code Analyzer

e Dealing with conditional statements
o 6 possible APl method call sequences: {i1, i2, i5}, {i1, i2, i6}, {i1, i2, i3, i5}, {i1, i2,
i3,i6}, {i1, 2, i4, i6}, and {i1, i2, i4, i5}.

public void fun(boolean condl, boolean cond2, boolean cond3) {
133
i2;
if (condl)
if (cond2) i3
else i4;
if (cond3) i5;
else i6;




Approach: Source Code Analyzer

e Selecting a subset of sequences
o Method overweight: Different methods may contain different numbers of conditional

statements.
o Common-path overweight: common path objects may be called repeatedly.

e Inlining non-third-party methods
o Issue: A single method may not contain all the involved third-party API methods of an API

usage scenario
o  When constructing the APl method call sequences of m, inline the APl method call

sequences of each non-third-party method m'’ called by m.
o  When m and m’ are in the same class, MAPO traverses the parser tree of the class for m's

APl method call sequences
o When not in the same class, MAPO resolves the declaring class of m and then finds the

declaring class’s source file for m 's method body
Iteration




Approach: APl Usage Miner

e Clustering API method call sequences

(@)

In both code snippets in Figure 1,
appendToGroup is used with
findMenuUsingPath and add, and the API
method call order is
findMenuUsingPath— add—
appendToGroup.

Observation: Among snippets, similar
method/class names tend to exhibit the
same usage

When calculating the similarity between
names, split them into words

public class DEditorActionContributor ... {
public void contributeToMenu(IMenuManager menu) {
super.contributeToMenu(menu);
IMenuManager editMenu = menu.findMenuUsingPath(IWorkbenchActionConstants.M_EDIT);
if(editMenu != null }{
editMenu.add(new Separator());
editMenu.appendToGroup(“additions”, fTogglelnsertModeAction);
}
}

}

public class RubyEditorActionContributor ... {
public void contributeToMenu(IMenuManager menuManager) {

IMenuManager gotoMenu = menu.findMenuUsingPath(“navigate/goTo");
if(gotoMenu != null ){
gotoMenu.add(new Separator(“additions2”));
gotoMenu.appendToGroup(“additions2”, fGotoMatchingBracket);
}
}

Fig. 1. Code snippets of “appendToGroup” returned by Google code search




Approach: APl Usage Miner

e Called APl methods
o Definition of the similarities between APl method call sequences
o 11 and 12 are the corresponding sets of APl methods appearing in the two
sequences.
o Numerator: The number of calls appearing in both sets
o Denominator: The number of calls appearing in either sets

#of API callsin I N I

sim(sy, S2) =

# of API callsin I U I3




Approach: APl Usage Miner

e Mining API patterns
o Minimum user-defined support: the number of API method call sequences that

contain the patterns
o In each cluster (C), the support of an API method call sequence (s) is defined as

follow:

# of API call sequences with s

support(s) =

# of API call sequences in C




Approach: APl Usage Recommender
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Evaluation: Experimental Study

e Setup

O

Apply 20 open source projects which use
GEF(Graphical Editing Framework) to
develop graphical editors as a code
repository.

MAPO extracted APl method call
sequences and built clusters of these
sequences using the technique
presented in APl usage miner.
Strathcona is able to locate a set of
relevant code snippets from a code
repository.

Restrict Google search scope to the
same projects as MAPO.

Table 1. Projects used to mine patterns

Project Project source LOC |#classes|#methods
Work flow TU Berlin 10125 101 1017
Net Editor TU Berlin 2867 35 359

Sequence Editor TU Berlin 3921 46 486
Visual OCL TU Berlin 11967 134 1077
PetriEditor TU Berlin 3248 44 375

jLibrary (Client) SourceForge 46213 | 503 3455
Green UML SourceForge 10652 146 1151

Quantum SourceForge 2380 33 225
GanttRCP SourceForge 3760 72 510
OpenWEFE (IDE) SourceForge 9952 178 954
Jupe SourceForge 8100 109 665
Schema Viewer SourceForge 3358 48 338
Janus SourceForge 1952 19 132
ZEN-kit University of California] 3991 151 314
SimpleGEF Bonevich 851 20 120
cvsgrapher Bonevich 1706 29 179
GEF tutorial EclipseTeam 837 19 122
GEF example EclipseTeam 1299 22 155
Hello GEF EclipseTeam 1042 18 144
OAW sample Eclipse GMT 12777 203 1196
Total 140998 1930 12974




Evaluation: Experimental Study

e Quantitative Comparison
o Prepared 13 programming tasks. In
each task, use the first API method
call and the programming context in
the example to query the three tools
o Column “Total num. of items” lists
the returned items from each query
o  Sub-columns “Strat.” and “Google” list
the number of snippets returned by
Strathcona and Google code search
respectively

Table 2. Comparison of Strathcona, Google code search, and MAPO

First matched snippet | Second matched snippet| Total num. of items

Example =570 T Google [MAPO| Strat. | Google | MAPO | Strat. | Google [MAPO
example 1 5 1 1 n/a 2 2 10 8 2)
example 2 1 1 1 2 n/a 2 10 7 (1)

example 3 1 3 1 5 4 2 10 12 @) (2)
example 4 | n/a - n/a n/a 10 n/a 10 11 n/a
example 5 1 7 2 3 13 3 10 33 2)
example 6 | n/a 9 n/a n/a 11 n/a 10 33 n/a
example 7 2 4 2 n/a 10 3 10 39 2)
example 8 | n/a n/a n/a n/a n/a n/a 10 18 (1)
example 9 | n/a 3 1 n/a 4 2 10 28 2)
example 10| 1 1 1 2 2 2 10 16 (1)
example 11| 2 10 1 n/a 1 2 10 39 (2)
example 12| n/a 1 1 n/a 2 2 10 27 ()

example 13 2 2 2 3 5 3 10 70 2)(1)




Evaluation: Experimental Study

e Quantitative Comparison(1st

matched)
o Strathcona always returns 10
snippets

o Google code search returns much
fewer snippets than expected
m Restrict search scope for fair
m Can filter out snippets that
match given keywords
o MAPO relies on mined patterns to
achieve a similar goal

Table 2. Comparison of Strathcona, Google code search, and MAPO

First matched snippet | Second matched snippet| Total num. of items

Example =570 T Google [MAPO| Strat. | Google | MAPO | Strat. | Google [MAPO
example 1 5 1 1 n/a 2 2 10 8 2)
example 2 1 1 1 2 n/a 2 10 7 (1)

example 3 1 3 1 5 4 2 10 12 @) (2)
example 4 | n/a - n/a n/a 10 n/a 10 11 n/a
example 5 1 7 2 3 13 3 10 33 2)
example 6 | n/a 9 n/a n/a 11 n/a 10 33 n/a
example 7 2 4 2 n/a 10 3 10 39 2)
example 8 | n/a n/a n/a n/a n/a n/a 10 18 (1)
example 9 | n/a 3 1 n/a 4 2 10 28 2)
example 10| 1 1 1 2 2 2 10 16 (1)
example 11| 2 10 1 n/a 1 2 10 39 (2)
example 12| n/a 1 1 n/a 2 2 10 27 ()

example 13 2 2 2 3 5 3 10 70 2)(1)




Evaluation: Experimental Study

e Quantitative Comparison(1st

matched)
o MAPO often requires programmers
to check fewer snippets for the first
match than Strathcona
o MAPO requires programmers to
check fewer snippets for the first
match than Google code search
o MAPO uses patterns as an index for
snippets, and it requires less effort to
locate the 1st match than the other
two tools

Table 2. Comparison of Strathcona, Google code search, and MAPO

First matched snippet | Second matched snippet| Total num. of items

Example =570 T Google [MAPO| Strat. | Google | MAPO | Strat. | Google [MAPO
example 1 5 1 1 n/a 2 2 10 8 2)
example 2 1 1 1 2 n/a 2 10 7 (1)

example 3 1 3 1 5 4 2 10 12 @) (2)
example 4 | n/a - n/a n/a 10 n/a 10 11 n/a
example 5 1 7 2 3 13 3 10 33 2)
example 6 | n/a 9 n/a n/a 11 n/a 10 33 n/a
example 7 2 4 2 n/a 10 3 10 39 2)
example 8 | n/a n/a n/a n/a n/a n/a 10 18 (1)
example 9 | n/a 3 1 n/a 4 2 10 28 2)
example 10| 1 1 1 2 2 2 10 16 (1)
example 11| 2 10 1 n/a 1 2 10 39 (2)
example 12| n/a 1 1 n/a 2 2 10 27 ()

example 13 2 2 2 3 5 3 10 70 2)(1)




Evaluation: Experimental Study

Quantitative Comparison(2nd
matched)

O

In 8 examples Strathcona fails to find
the 2nd match

3 examples MAPO fails to find the
2nd match

MAPO requires to check fewer or the
same number of snippets for the 2nd
match than Strathcona.

In summary, MAPO requires less
effort to search for rematched
shippets than the other tools

Table 2. Comparison of Strathcona, Google code search, and MAPO

First matched snippet | Second matched snippet| Total num. of items

Example =570 T Google [MAPO| Strat. | Google | MAPO | Strat. | Google [MAPO
example 1 5 1 1 n/a 2 2 10 8 2)
example 2 1 1 1 2 n/a 2 10 7 (1)

example 3 1 3 1 5 4 2 10 12 @) (2)
example 4 | n/a - n/a n/a 10 n/a 10 11 n/a
example 5 1 7 2 3 13 3 10 33 2)
example 6 | n/a 9 n/a n/a 11 n/a 10 33 n/a
example 7 2 4 2 n/a 10 3 10 39 2)
example 8 | n/a n/a n/a n/a n/a n/a 10 18 (1)
example 9 | n/a 3 1 n/a 4 2 10 28 2)
example 10| 1 1 1 2 2 2 10 16 (1)
example 11| 2 10 1 n/a 1 2 10 39 (2)
example 12| n/a 1 1 n/a 2 2 10 27 ()

example 13 2 2 2 3 5 3 10 70 2)(1)




Evaluation: Experimental Study

Table 3. Impacts of MAPO’s design decisions

) Impacts Of M APO’S DQSign First matched snippet|Second matched snippet| Total num. of items

. Example [T TS STXTT xC [ AN] XS] xI| xC | All | xS xI | xC

DGCISIO“S example 1| 1 1 |na| 1 2 2 | n/a 2 2) | 2) | n/a | (2)

. .. . example 2 | 1 1 | 1 2 2 2 2 () | () [ (1) | (D)

o  Turn off MAPOQO'’s individual internal cample3| T T [T [oa |22 [ 2 wa [@0@oe0n] @

tech n|q ues example4 | n/a [ n/a | n/a | n/a | n/a | n/a | n/a n/a n/a | nfa | n/a | n/a

. . . example 5| 2 2 2 | n/a 3 3 3 n/a 2 [ @2 | 2 | na

O SEIGCtIOﬂ. helpS MAPO mine frequent example 6| n/a | n/a | n/a | n/a | n/a | n/a | n/a n/a n/a | n/a | n/a | n/a

API| method call sequences example7| 2 [ 2 [ 2 [na |3 |3 [3 ]| wa [ ]| 2] @ |wa

e . . example 8 | n/a [ n/a | n/a | n/a | n/a | n/a | n/a n/a (1) () | (1) | (1)

o Inlining: helps MAPO mine APl method sl T 1T T T 2121212 oo oo

calls from different methods of client eample O 1 [ L J1 [ 1 Jaf2f2] 2 foJm]d]m

d example 11] 1 | 1 | n/a| 2 2 2 n/a 2| 2| (2 | n/a

coae cample 12| 1 [ T |1 [t [2]212] 2 OO |OD][D

o Clustering: helps MAPO alleviate the example 13] 2 [ n/a[wa[wa |3 [walna] wa [OO] @ [O®] @
interlacement among different usages In this table, we highlight those affected values with the bold font.

that are sensitive to programming
tasks.



Evaluation: Experimental Study

e Impacts of MAPO'’s Design Decisions o o
o  Clustering: If IN] is small, s1's support I ‘4 'lth ( S1 ) I -> | ” lth ( S1 ) |
value does not decrease much, and can | Cl | | (,'1 l + I N |
still be a frequent sequence: 1,2, 9, 10, -
and 12
o If IN]is large, s1's support value may O N OFF

decrease too much to be mined as a
frequent sequence: 5,7, and 11

o Nis the set of sequences that also call
APl methods in s1 from other clusters

o “#of APl method call sequences with ss”
“# of APl method call sequences in

cluster C1".




Evaluation: Experimental Study

e Threats to Validity
o Only one set of APIs is used, and the recommendations are all on the use of GEF

o Code snippets are limited in number

o Code snippets from books may omit rare usages

o Some other code search engines or tools may perform better than these two tools




Evaluation: Empirical Study

o AlmS tO |nveSt|gate Whether MAPO Table 4. Tasks used in the empirical study
. Task Description Essential API calls
can assi St prog rammers tO 1 |Factor an incoming request 3
. 2 [Start monitoring property changes 4
complete programming tasks 3 [Update the name and the bounds of a figure 3
. 4 |Add a context menu to an editor D
® 6 progl’ammlng taSkS 5 |Add a tool bar to an editor 5
. 6 [Save the content of a editor 8
e 6 graduate students (subjects) Table 5. Background of the subjects
. . . . Gri 1 Group 2
m aJ orin g INn com p Uter science fro m subject 1 subj'):cpl 2|subject 3|subject 4 sub(]?egt 5|subject 6
. . . Java (Year 4 3 2 3 1 3
Peking University to complete the 6 e W B o e I

tasks




Evaluation: Empirical Study

e 2 stages

e |n each stage, the 2 groups
exchange their roles as the MAPO
group and the control group

e 1st stage, completing task 1-3,
Group 1 using Google code search
and Strathcona, Group 2 using
MAPO

e 2nd stage, completing task 4-6,

Group 1 using MAPO

Table 6. Results of the empirical study

Control Group MAPO Group
subject 1 |subject 2{subject 3| total |subject 4|subject 5|subject 6| total
Task 1 0 0 0 0 0 1 0 1
Task 2 0 1 1 2 0 1 1 2
Task 3 2 0 5 i 2 4 0 6
MAPO Group Control Group
subject 1|subject 2{subject 3| total |subject 4|subject S|subject 6| total
Task4| 0 0 0 0 5 4 0 9
Task 5 0 0 0 0 0 4 0 4
Task6] 0 2 3 5 4 3 3 10




Evaluation: Empirical Study

e |InTasks 1 and 2, thereis a little Table 6. Results of the empirical study
difference between the MAPO group Control Group MAPO Group
and the control group. subject I |subject 2|subject 3| total |subject 4|subject S|subject 6| total
e InTask 3, there is also a little difference |[Taskl[ 0 0 0 0 0 1 0 1
between the MAPO group and the Task2) 0 1 I [2] 0 1 i |2
control group. Task3| 2 0 5 7 2 3 0 6
e InTasks 4,5, and 6, thereis a ____MAPO Group ___Control Group
signiﬁcant difference in perform ance subject 1{subject 2|subject 3| total |subject 4|subject S|subject 6| total
between the MAPO group and the Toskal 0 0 0o [of s | 0 [ 9
control group ko] U 0 J o Jol o] 4T o0 [4
: Task 6] 0 2 3 5 4 3 3 10

e Inthe task 4-6, as APl usages are
relatively complicated, MAPO
successfully helps programmers
produce code with fewer bugs than the
other two tools




Evaluation: Empirical Study

Threats to validity

©)

©)

©)

Shares the threats with the study in Experimental Study as well

Involves human subjects

The results observed in the empirical study may not be applicable to programming
tasks which are not in the study

Control group can use both Google code search and Strathcona, which may have
negative impacts on the two tools

The learning curve of the these subjects may affect the results




Conclusion

e MAPO: Help understand API usages and write API client code more effectively.

e MAPO implements a mechanism that combines frequent subsequence mining
with clustering to mine APl usage patterns from code snippets.

e MAPO provides a recommender that integrates with the existing Eclipse IDE.
Through MAPQ’s recommender, a programmer can retrieve patterns to help
navigate their associated snippets to find the code snippet of interest effectively.

e The study results show that MAPO helps a programmer to locate useful code
snippets more effectively than existing tools Strathcona and Google code search




Discussion

e Pros and cons on evaluation process

e Possible improvements on MAPQO?

e Which tool/tools you will prefer to use?(MAPO, Google Code Search & Strathcona)
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